
Final Exam — Analysis (WPMA14004)

Tuesday 19 June 2018, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (5 + 10 = 15 points)

(a) Give the definition of a least upper bound.

(b) Assume that the sets A,B ⊂ R are non-empty and bounded above. Define

A +B = {a+ b : a ∈ A and b ∈ B}.
Prove that

sup(A +B) = supA + supB.

Problem 2 (5 + 5 + 5 = 15 points)

Give an example of each of the following, or argue that such a request is impossible:

(a) A sequence that contains subsequences converging to every point in the infinite set
{1, 1

2
, 1
4
, 1
8
, . . . };

(b) A convergent series
∑

∞

n=1 xn and a bounded sequence (yn) such that the series
∑

∞

n=1 xnyn
diverges;

(c) A sequence (xn) satisfying 0 ≤ xn ≤ 1/n for all n ∈ N such that the series
∑

∞

n=1(−1)nxn

diverges.

Problem 3 (5 + 5 + 5 = 15 points)

Consider the following set:

A =

{

− 1

2
,
3

4
,−7

8
,
15

16
,−31

32
,
63

64
,−127

128
, . . .

}

.

Show that A is not compact in the following ways:

(a) A does not satisfy the definition of a compact set;

(b) A is not closed;

(c) A has an open cover without a finite subcover.
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Problem 4 (4 + 7 + 4 = 15 points)

(a) Give the definition of a uniformly continuous function.

(b) Prove that f(x) = 1/x2 is uniformly continuous on [1,∞).

(c) Is f(x) = 1/x2 also uniformly continuous on (0, 1]?

Problem 5 (3 + 6 + 6 = 15 points)

Consider the following sequence of functions:

fn(x) =
n

nx+ 1
.

(a) Compute the pointwise limit for all x ∈ (0,∞).

(b) Let a > 0. Prove that the convergence is uniform on the interval [a,∞).

(c) Is the convergence also uniform on (0,∞)?

Problem 6 (3 + 8 + 4 = 15 points)

Let {r1, r2, r3, . . . } be an enumeration of all rational numbers in [0, 1], and define

f(x) =

{

1/p2 if x = rp for some p ∈ N,

0 otherwise.

(a) Show that L(f, P ) = 0 for any partition P of [0, 1].

(b) Explain that for any equispaced partition P of [0, 1] with 2n subintervals we have

U(f, P ) ≤ 1

n

n
∑

k=1

1

k2
.

Hint: in the worst case scenario the points r1, . . . , rn lie at the boundary of two
adjacent subintervals.

(c) Prove that f is integrable on [0, 1] and compute
∫ 1

0
f .

End of test (90 points)
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Solution of problem 1 (5 + 10 = 15 points)

(a) A number s ∈ R is called a least upper bound for a set A ⊂ R if

(i) a ≤ s for all a ∈ A;
(2 points)

(ii) if u is an upper bound for A, then s ≤ u.
(3 points)

Equivalent (but not a definition!):
for any ǫ > 0 there exists a ∈ A such that s− ǫ < a.
(2 points)

(b) Write s = supA and t = supB. If a ∈ A and b ∈ B, then a ≤ s and b ≤ t implies
that a + b ≤ s+ t, which shows that s+ t is an upper bound for A+B.
(4 points)

In order to show that s+ t is the least upper bound of A+B we can proceed in two
directions.

Method 1. Let u be any upper bound of A+B. Let b ∈ B be arbitrary, then a+b ≤ u,
or, equivalently, a ≤ u− b for all a ∈ A. This shows that u− b is an upper bound of
A. Therefore, s ≤ u− b since s is the least upper bound of A.
(2 points)

Since b was arbitrary, it follows that b ≤ u− s for all b ∈ B. This shows that u− s is
an upper bound of B. Therefore, t ≤ u− s since t is the least upper bound of B.
(2 points)

Rewriting the inequality gives s + t ≤ u which shows that s + t is the least upper
bound of A+B.
(2 points)

Method 2. For any ǫ > 0 there exist elements a ∈ A and b ∈ B such that

s− 1
2
ǫ < a and t− 1

2
ǫ < b.

(3 points)

This implies that s+ t− ǫ < a+ b, which means that s+ t− ǫ is not an upper bound
of A+B. Hence, s+ t is the least upper bound of A+B.
(3 points)

Note: it is of course also correct to start with s − ǫ < a and t − ǫ < b to get
s+ t− 2ǫ < a + b.
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Solution of problem 2 (5 + 5 + 5 = 15 points)

(a) The easiest way to construct such an example is by ensuring that each number of the
set {1, 1

2
, 1
4
, 1
8
, . . . } appears in the sequence an infinite number of times. In this way

we can always find a constant (and hence convergent) subsequence converging to the
desired limits. An example of such a sequence is:

(

1, 1,
1

2
, 1,

1

2
,
1

4
, 1,

1

2
,
1

4
,
1

8
, 1,

1

2
,
1

4
,
1

8
,
1

16
, . . .

)

.

(5 points)

(b) The series
∑

∞

n=1(−1)n+1/n converges because it satisfies the conditions of the Altern-
ating Series Theorem. The sequence yn = (−1)n+1 is trivially bounded. However, the
series

∑

∞

n=1 xnyn =
∑

∞

n=1 1/n diverges.
(5 points)

(c) Take, for example, the sequence

xn =

{

0 if n is odd,

1/n if n is even.

Clearly, 0 ≤ xn ≤ 1/n for all n ∈ N. The series
∑

∞

n=1(−1)nxn = 1
2

∑

∞

n=1 1/n diverges.
(5 points)
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Solution of problem 3 (5 + 5 + 5 = 15 points)

Note that we can write

A = {an : n ∈ N} where an =
(−1)n(2n − 1)

2n
.

(a) By definition A is compact if any sequence in A has a convergent subsequence with a
limit in A. Note that A is bounded. Indeed,

|an| =
2n − 1

2n
< 1 for all n ∈ N,

which shows that A ∈ (−1, 1). The Bolzano-Weierstrass theorem implies that every
sequence in A has a convergent subsequence. However, the limit of such a subsequence
does not have to be an element of A.

Indeed, the sequence xn = a2n = 1 − 1/22n is a sequence in A that already itself
converges to 1. Therefore, any subsequence of (xn) also converges to 1, but 1 /∈ A.
(5 points)

Alternative argument. The sequence xn = a2n+1 = 1/22n+1−1 is a sequence in A that
already itself converges to −1. Therefore, any subsequence of (xn) also converges to
−1, but −1 /∈ A.

(b) The points 1 and −1 are limit points of A which are not contained in A itself. This
follows from a similar reasoning as in part (a). Hence, A is not closed.
(5 points)

(c) Take, for instance, the open intervals On = (−1, a2n). Then

∞
⋃

n=1

On = (−1, 1) ⊃ A,

which shows that the collection {On : n ∈ N} forms an open cover for A.
(2 points)

However, finitely many sets On do not cover A. Indeed, for natural numbers n1 <
n2 < . . . nk we have

On1
∪ On2

∪ · · · ∪Onk
=

(

−1,
22nk − 1

22nk

)

,

which does not contain the points a2n = (22n − 1)/22n ∈ A with n > nk.
(3 points)

Note. Many different covers are possible. For example, one could also take

On =

(

− n+ 1

n
,
n+ 1

n

)

.
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Solution of problem 4 (4 + 7 + 4 = 15 points)

(a) A function f : A → R is uniformly continuous on A if for all ǫ > 0 there exists δ > 0
such that

|x− y| < δ ⇒ |f(x)− f(y)| < ǫ ∀ x, y ∈ A.

(4 points)

(b) Method 1. We have that

|f(x)− f(y)| =
∣

∣

∣

∣

1

x2
− 1

y2

∣

∣

∣

∣

=

∣

∣

∣

∣

y2 − x2

x2y2

∣

∣

∣

∣

=

∣

∣

∣

∣

y + x

x2y2

∣

∣

∣

∣

· |x− y|.

For all x, y ∈ [1,∞) we have

∣

∣

∣

∣

y + x

x2y2

∣

∣

∣

∣

=
y + x

x2y2
=

1

x2y
+

1

xy2
≤ 1 + 1 = 2,

which implies that
|f(x)− f(y)| ≤ 2|x− y|.

(4 points)

Method 2. The function f(x) = 1/x2 is differentiable for all x 6= 0. Let x, y ∈ [1,∞)
and assume x < y. By the Mean Value Theorem there exists c ∈ (x, y) such that

f(x)− f(y) = f ′(c)(x− y) = − 2

c3
(x− y).

Hence, if x, y ≥ 1, then

|f(x)− f(y)| = 2

c3
|x− y| ≤ 2|x− y|.

(4 points)

Conclusion. Let ǫ > 0 be arbitrary and set δ = 1
2
ǫ. Then

|x− y| < δ ⇒ |f(x)− f(y)| ≤ 2|x− y| < 2δ = ǫ ∀ x, y ∈ [1,∞).

(3 points)

(c) Take sequences xn = 1/
√
n and yn = 1/

√
n+ 1, then xn − yn → 0, but |f(xn) −

f(yn)| = 1 for all n ∈ N. Therefore, f is not uniformly continuous on (0, 1].
(4 points)
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Solution of problem 5 (3 + 6 + 6 = 15 points)

(a) Let x ∈ (0,∞) be fixed. By the Algebraic Limit Theorem it follows that

lim fn(x) = lim
n

nx+ 1
= lim

1

x+ 1/n
=

1

lim(x+ 1/n)
=

1

x+ lim 1/n
=

1

x
.

(3 points)

(b) We have

|fn(x)− f(x)| =
∣

∣

∣

∣

n

nx+ 1
− 1

x

∣

∣

∣

∣

=

∣

∣

∣

∣

nx

x(nx+ 1)
− nx+ 1

x(nx+ 1)

∣

∣

∣

∣

=
1

x(nx+ 1)
.

Argument 1. Let a > 0 be fixed. If x ∈ [a,∞), then x(nx + 1) ≥ a(na + 1) > na2 so
that

|fn(x)− f(x)| < 1

na2
∀ x ∈ [a,∞).

For ǫ > 0 there exists N ∈ N such that 1/N < a2ǫ. Hence,

n ≥ N ⇒ |fn(x)− f(x)| < 1

na2
≤ 1

Na2
< ǫ ∀ x ∈ [a,∞).

This shows that fn → f uniformly on [a,∞).
(6 points)

Argument 2. Let a > 0 be fixed. We have

sup
x∈[a,∞)

|fn(x)− f(x)| = 1

a(na + 1)
<

1

na2
,

which implies that

lim
n→∞

(

sup
x∈[a,∞)

|fn(x)− f(x)|
)

= 0.

This shows that fn → f uniformly on [a,∞).
(6 points)

(c) Argument 1. In order to satisfy

n ≥ N ⇒ |fn(x)− f(x)| = 1

x(nx+ 1)
< ǫ

we must take N > (ǫ− x)/x2. This shows that N also depends on x: taking x closer
to 0 implies that N has to become larger. Hence, fn does not converge uniformly to
f on (0,∞).
(6 points)

Argument 2. The function |fn(x)− f(x)| is unbounded on (0,∞):

sup
x∈(0,∞)

|fn(x)− f(x)| = ∞.

This shows that fn does not converge uniformly to f on (0,∞).
(6 points)
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Solution of problem 6 (3 + 8 + 4 = 15 points)

(a) Let P = {x0 < x1 < . . . xn} be any partition of [0, 1]. Every subinterval [xk−1, xk]
contains an irrational number. Therefore,

mk = inf
x∈[xk−1,xk]

f(x) = 0,

which implies that

L(f, P ) =
n

∑

k=1

mk(xk − xk−1) = 0.

(3 points)

(b) First assume that P = {x0 < x1 < x2} is an equispaced partition with 2 intervals. So
x0 = 0, x1 =

1
2
, and x2 = 1. In order to get the largest possible upper sum we have to

make the supremum over each subinterval as large as possible. In the worst possible
case we have

M1 = sup
x∈[x0,x1]

f(x) = f(r1) = 1 and M2 = sup
x∈[x1,x2]

f(x) = f(r1) = 1.

This is the case when x1 = r1, so when r1 lies at the common boundary points of the
intervals [x0, x1] and [x1, x2]. In this case we have

U(f, P ) =
2

∑

k=1

Mk(xk − xk−1) =
2

∑

k=1

1

2
= 1.

Now let P = {x0 < x1 < · · · < x2n} be an equispaced partition of [0, 1] with 2n
subintervals. By definition we have

U(f, P ) =

2n
∑

k=1

Mk(xk − xk−1) =
1

2n

2n
∑

k=1

Mk where Mk = sup
x∈[xk−1,xk]

f(x).

In the worst case scenario the points r1, . . . , rn lie at the boundary of two adjacent
subintervals. This happens, for example, when

x1 = r1, x3 = r2, x5 = r3, . . .

Note that different orderings are possible.
(4 points for any decent explanation)

Therefore,

U(f, P ) =
1

2n

2n
∑

k=1

Mk ≤ 1

2n

n
∑

k=1

2f(rk) =
1

n

n
∑

k=1

1

k2
.

(4 points for estimate)
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(c) Recall that the series
∑

∞

k=1 1/k
2 converges. In particular, there exists C > 0 such

that
∑n

k=1 1/k
2 ≤ C. For any ǫ > 0 there exists n ∈ N such that C/n < ǫ. Let

P = {x0 < x1 < · · · < x2n} be an equispaced partition of [0, 1] with 2n subintervals.
Then by parts (a) and (b) we have

U(f, P )− L(f, P ) = U(f, P ) ≤ C

n
< ǫ,

which proves that f is integrable on [0, 1].
(3 points)

Since L(f, P ) = 0 for all partitions P of [0, 1] it follows that

∫ 1

0

f = L(f) = sup{L(f, P ) : P is a partition of [0, 1]} = 0.

(1 point)

Alternative argument. By part (b) it follows that

∫ 1

0

f = U(f) = inf{U(f, P ) : P is a partition of [0, 1]} = 0.

(1 point)
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